0.999... is equal to 1 here, not lesser than 1.Briefly, the position appears to be that in the (classical) real number line, 0.999... is the largest real number which is less than 1; Cantor's Diagonal Argument certainly seems to support this interpretation, — alan1000
Abraham Robinson's definition of h revolutionised mathematics in the 1960's. Briefly, he defined the infinitesimal as a number which, for all values of a, is <a and >-a. Thus the infinitesimal may have a range of values, including 0. Within THIS number line, it appears to be undeniable that 0.999... meets the limit of 1, and thus 0.999...=1. — alan1000
I'm sorry, but none of the replies so far seem to evidence any familiarity with number theory or basic set theory... — alan1000
Briefly, the position appears to be that in the (classical) real number line, 0.999... is the largest real number which is less than 1 — alan1000
I'm sorry, but none of the replies so far seem to evidence any familiarity with number theory or basic set theory... — alan1000
Abraham Robinson's definition of h revolutionised mathematics in the 1960's. — alan1000
I'm having visions of the forums being overtaken by the self-replicating grey goo of misnamed threads concerning 0.9999... — Banno
Wow, I did not see that coming. More than 2500 years of mathematical development flushed down the toilet in a few seconds! — alan1000
"Relationships of numbers" is a defining property of the relational number line (the line of negative and positive integers). But you deny the existence of number lines. Can you develop this point? — alan1000
I would say that whether 0.999...=1 is crucially dependent upon which number line is presupposed. — alan1000
in the (classical) real number line, 0.999... is the largest real number which is less than 1 — alan1000
Cantor's Diagonal Argument certainly seems to support this interpretation — alan1000
Abraham Robinson — alan1000
.9999... = x
9.9999... = 10x
10x-x = 9.999... - .999...
9x = 9
x = 1 — flannel jesus
"The set of all sets that do not contain themselves". Obviously this top set could not self reference. I would say the same of Godel — Gregory
It seems to me that geometry/space is what has presente a foundation for all mathematics. — Gregory
As with Zeno's paradoxes where we see space dissolve into nothing (or parmendian pure being), numbers must have a basic unity that holds them from infinite divisione. If we have 1, then we have 2 halfs, which each is one, so 1 is two. This can go on forever- as with divisione of a line. Numbers are synthetic (Kant)and nah platonic (Plato). A number is not a set. 7 is not the set of 7 ones. Sets are applied by us TO numbers which WE can choose how to group — Gregory
In mathematics - a paradox (inconsistency) demonstrates a faulty set of axioms — Treatid
Get involved in philosophical discussions about knowledge, truth, language, consciousness, science, politics, religion, logic and mathematics, art, history, and lots more. No ads, no clutter, and very little agreement — just fascinating conversations.