• JuanZu
    133
    Let me quote you:


    . I think that any instance of the conception of a triangle actually does reduce to a purely psychological act.Metaphysician Undercover


    Well, here you are talking about reducing the concept of a triangle to a pure psychological act. And this is where my refutation comes in. The processes that lead to the discovery of an essential relationship in a right triangle cannot be determined as psychological operations, since the difference between the terms and operations of both fields is necessary. You would have to make this reduction and explain it. But I know you won't do it, because it can't be done. Any attempt at something like that would only establish association relationships between elements. But association does not mean identity, much less identity in operations and relationships.

    It doesn't matter if you want to include the larger geometry context where you can define primitive notions such as line or point. My point has been developed on that reduction that you have pointed out from psychology. If you want to do meta-theory or meta-geometry from the field of logic, that's fine with me. Better for this point, since logic is precisely a field that also transcends the psychological act.

    The field of geometry is closed in relation to the field of psychology. You are not reading, you are assuming things and creating straw men. Saying that the field of geometry is closed with respect to that of psychology is only a necessary argument for the debate. That is, certainly the field of geometry is closed to a psychological approval that attempts to found and determine it.
    The incommensurability between both fields is especially present in the methodological order: Association is not equivalent to identity or equality. At any point in the reduction that you propose, but do not justify or explain, it will happen that you will fall into a question-begging where the object you want to reduce (the terms of geometry) will need to only establish associations with terms (those of psychology). ) semantically different.




    OK, now the point is that there is incommensurability between the different types of numbering systems. And, this incommensurability exists within the same field. Therefore your conclusion that fields are closed to each other when there is incommensurability between them, is unsound. Furthermore, your argument that geometry and psychology are distinct fields is also unsound. And, we can conclude that your presumption that these two names are representative of two distinct fields is nothing but a prejudice which is presented a premise for a fallacious argument, due to the fallacy of assuming the conclusion, begging the question.Metaphysician Undercover

    You have said that they are incommensurable, but that incommensurability, as you treat it, if we follow your strange reasoning, since it evokes an absolute difference, you cannot speak of two numerical systems. You would have to talk about a numerical system and something else that can no longer be a numerical system. That is why you fall into a performative contradiction, because you are involuntarily assuming the same within what you try to express as different.


    Did you not read where I explained the difference between "being the same thing", and "being of the same type". I'm really starting to think that you do not even bother to read half of what I post JZ.Metaphysician Undercover

    I read it and refuted it. Showing how your argument leads to the misunderstanding that would not allow us to talk about two types of anything. Well, I contrasted analogy with equivocation: that a thing be identical and different at the same time.

    When I talk about "meaning" I am not referring to something that happens in language, or something from authors with intentions and purposes, or anything like that. I am talking about the sense of, for example, an internal relationship between the elements of an object called a triangle. They occur from the object itself and have a meaning that is contrary to our intentionality, in the sense that it affects us from the outside, so to speak. The meaning here is that of the thing itself, that which belongs to its being.

    Otherwise the rest of your answer is based on introducing notions such as intentional acts (voluntary, with a purpose, with priorities and scales of value). But introducing these notions is wrong, in the sense that they are far from being able to describe the non-intentional and non-voluntary aspect that belongs to the thing that occurs as an internal relationship between elements of something like a triangle. Except for the notion of "order" which is referred to formalization of set theory then also transcends the psychological act. But I suspect that what you understand by order is rather referring to the human act of ordering things.
  • Metaphysician Undercover
    13.2k
    Well, here you are talking about reducing the concept of a triangle to a pure psychological act. And this is where my refutation comes in. The processes that lead to the discovery of an essential relationship in a right triangle cannot be determined as psychological operations, since the difference between the terms and operations of both fields is necessary. You would have to make this reduction and explain it. But I know you won't do it, because it can't be done. Any attempt at something like that would only establish association relationships between elements. But association does not mean identity, much less identity in operations and relationships.JuanZu


    What I am saying is that there is no such difference, it is all psychological. You are merely insisting on a difference to support your ontological position. All the geometrical terms, points, lines, angles, etc., what you call the "elements", along with the relations between them, refer to things imagined by the mind. And things imagined by the mind are studied in the field of psychology. There, I have made the reduction and explained it.

    Now, the onus is on you to support your claimed "difference". You refer to "the discovery of an essential relationship in a right triangle", but this makes no sense to me. Any supposed "essential relation" can be shown to be made up, fabricated, created by a mind, and that is why this act (as an act of the imagination), is reducible to being a psychological act. It is not an act of discovering something. An act of discovery could not be described as purely psychological, because there would be something independent of the mind, which would be what is "discovered".

    There are two "essential" aspects of the right triangle. One is the right angle, which I described as two lines crossing with equal angles on all four sides, and this is completely imaginary. The other is the triangle, which I described as a plane figure with three sides and three angles. A "plane figure" is completely imagined, and not discovered, therefore this essential aspect is also reducible to being purely psychological. The relation between these two essential aspects, which is to put these two together, and create a right triangle is also a constructive act of the imagination, and therefore psychological. It is all imaginary, psychology, there is nothing here which is discovered.

    The field of geometry is closed in relation to the field of psychology. You are not reading, you are assuming things and creating straw men. Saying that the field of geometry is closed with respect to that of psychology is only a necessary argument for the debate. That is, certainly the field of geometry is closed to a psychological approval that attempts to found and determine it.JuanZu

    You are only providing more evidence that you are simply begging the question with your claim: " the field of geometry is closed with respect to that of psychology is only a necessary argument for the debate."

    What you appear to be saying, is that this premise is not made "necessary" by any real evidence, it is just necessary for your argued position. However, as I explained, it is the only way that you can support your conclusion, by starting with a premise which leads necessarily to that conclusion. Begging the question.

    The incommensurability between both fields is especially present in the methodological order: Association is not equivalent to identity or equality.JuanZu

    As I clearly explained, and gave very good examples to support what I said, incommensurability does not imply closure and a separation into two fields closed to each other. There is often incommensurability within the very same field.

    You have said that they are incommensurable, but that incommensurability, as you treat it, if we follow your strange reasoning, since it evokes an absolute difference, you cannot speak of two numerical systems. You would have to talk about a numerical system and something else that can no longer be a numerical system. That is why you fall into a performative contradiction, because you are involuntarily assuming the same within what you try to express as different.JuanZu

    This very poor logic. There is no "absolute difference" implied, even though I cannot say that I understand what that would actually mean. As I explained already, two things of the same type can be called by the same name. Two different dogs are both called "dogs". Two different numerical systems can both be called "numerical systems". And, the two incommensurable numerical systems can exist within the same field, mathematics. Your claim that only one could be called a numerical system, and the other would have to be called something else, is nonsensical and clearly illogical, as being not supported by any premise which would produce that conclusion.

    And if you stated the required premise you would see how unsound it is. The premise would be "two incommensurable things cannot be of the same type". But, here we have two incommensurable numbering systems, things of the same type, which are also incommensurable. The required premise is obviously false.

    I read it and refuted it. Showing how your argument leads to the misunderstanding that would not allow us to talk about two types of anything. Well, I contrasted analogy with equivocation: that a thing be identical and different at the same time.JuanZu

    Well, if you do not agree that two different things can be said to be the same type, then I believe this discussion is pointless. And I really do not see how you conclude that this would make it impossible to speak of two different types.

    I think you need to show your arguments more clearly JZ. State your premises clearly and show the logic which leads to your conclusion. Simply making assertions that your conclusions are logical doesn't cut it. Look, you concluded that my way of looking at things would mean that there could not be two different numerical systems, without showing any premises or logical procedure which produces that conclusion. In a very similar way, you now claim that what i said leads to the conclusion that we cannot speak of two different types. Where are your premises, and logical procedure which produces these absurd conclusions?

    When I talk about "meaning" I am not referring to something that happens in language, or something from authors with intentions and purposes, or anything like that. I am talking about the sense of, for example, an internal relationship between the elements of an object called a triangle. They occur from the object itself and have a meaning that is contrary to our intentionality, in the sense that it affects us from the outside, so to speak. The meaning here is that of the thing itself, that which belongs to its being.JuanZu

    This is all psychology, as explained above. The supposed "elements", lines and angles, along with the internal relations, are completely imaginary. These are all created by the imagination, and so is your supposed "object itself", a product of the mind. Your proposed "thing itself", the right triangle, along with whatever meaning is supposed to be associated with it, since it is all, in its entirety, a product of the imagination itself, is to be understood through psychology.
  • Wayfarer
    22.5k
    And things imagined by the mind are studied in the field of psychology.Metaphysician Undercover

    Regrettably in this case I have to agree with your opponent. That is the error of psychologism. Geometric shapes and numbers are not mind-dependent in that sense at all, even though they can only be perceived by the mind. As Bertrand Russell remarked of universals 'universals are not thoughts, though when known they are the objects of thoughts.'

    These are all created by the imagination, and so is your supposed "object itself", a product of the mind.Metaphysician Undercover

    I imagine you're a steam train or a walrus, so it must be true, right? How could it not be, my imagination cannot err.
  • Tom Storm
    9.1k
    Do you have a reference for anything by Russell placing universals in the context of his philosophical naturalism?
  • Wayfarer
    22.5k
    That quote comes from a chapter called The World of Universals in The Problems of Philosophy. It is one of his very early books, but a very helpful treatment of universals in my opinion. As for reconciling universals with naturalism, I don't think he would have tackled that, and I'd be surprised if it were possible, as today's naturalism is pretty solidly grounded in a nominalist attitude, I would have thought. Although I think the early Russell was always more open to some aspects of philosophical idealism than many of his successors and that he was to become later in life.
  • Tom Storm
    9.1k
    I thought so. I read all his big books a couple of times each 30 years ago, I remember his tone and approach but not much more.
  • Wayfarer
    22.5k
    Don’t know if I’ve related this anecdote but when I finally decided to give uni a shot, several years after leaving school, I sat the quaintly-named Mature Age Student Entrance Exam. It was sat in an old-fashioned exam room, rows of desks, pencil and paper. And Lo and Behold, the main body of the exam was a comprehension test on a 1,500-odd word passage, with searching questions about what it meant. And that passage was from Russell’s Mysticism and Logic! It was spookily apt, as it was just the kind of subject that I was interested in. And not only did it get me in, it more or less defined my self-designed curriculum for my subsequent degree.
  • Wayfarer
    22.5k
    And actually, come to think of it, and considering my appalling academic record, it was, until then, about the only exam I'd ever passed.
  • Metaphysician Undercover
    13.2k
    Regrettably in this case I have to agree with your opponent.Wayfarer

    Yes, I already knew that you held this opinion. You like to portray the issue as a debate between nominalism and realism, and through that approach I've tried to get you to change your mind numerous times.

    The principal issue which Plato pointed to, Aristotle elucidated, and Aquinas expounded on, developing clear principles to deal with, is that we need to maintain a real separation between "Forms" which exist independently from the human mind, and "ideas" which exist within the human mind, and are therefore dependent on it. A careful understanding of Plato and Aristotle will see this separation revealed in the usage of "idea" prevalent in Plato, and the distinct term "form" which Plato introduced, and became prevalent in Aristotle. (https://philosophy.stackexchange.com/questions/77950/how-when-and-why-platos-ideas-were-changed-to-forms-in-english-translation). This separation is the only conceivable way that we can account for the reality of error in human ideas, and human knowledge in general.

    Without the separation, we'd have to say that some human ideas are true, independent Forms, with eternal truth, while other human ideas are fallible. Then we would need some principles to distinguish which human ideas are properly independent Forms, and which are fallible human opinions.

    So, we can proceed by examining the evidence available to us, which appears to us as the existence of human ideas, just like Plato did. Then we find through Plato's guidance, that there is no real identifiable difference between the very subjective ideas such as "love", "friendship", "beauty", "just", and the supposedly more objective ideas like "chair", "bed", and even the mathematical axioms. The difference between the two is the strength of the human conventions which 'fix' the meaning of the terms in what appears to be unchanging, eternal forms. We can also see that this strength, or fortification of the human idea through convention, is supported by usefulness.

    This evidence, derived from the extensive and very thorough investigation and analysis into the true nature of human ideas is what leads to nominalism. But that is not the end of the story because now the fortitude of human conventions, along with the moral virtue and ethics which support these conventions, becomes the central issue. What the investigation and analysis of human ideas revealed to Plato, is that human ideas precede in time, the artificial things which the human beings bring into existence, in the sense of being causal. This is the formula which is applied in production, and this causal role he associated with "the good", what Aristotle termed as "final cause". The priority of the ideas is revealed in the cave allegory as what causes the shadows which most people think are the real things. You'll see in The Republic, that the carpenter works with an idea which is the formula for "bed" and this is supposed to be a representation of the divine Idea of "Bed". But the formula, as the idea in the carpenter's mind, is not actually the same as the divine "Idea", the perfection of the "ideal", which following Aristotle became known as the independent "Form", it is only as near to the ideal as the carpenter's human (less than perfect) mind will provide for.

    Now we have the principles for the separation between the divine, separate Forms, and the human ideas, which are supposed to be a representation of the divine, but are really just the best that the individual human being's capacities will provide for through the means of the fortitude of human conventions. This separation is pursued by Plato in books like The Timaeus, and Aristotle in his Metaphysics, and the ensuing efforts of Neo-Platonists and Christian theologians.
  • JuanZu
    133
    What I am saying is that there is no such difference, it is all psychologicalMetaphysician Undercover

    I'm sorry but that is absolutely false. Even empirical evidence refutes it. For example, as children we do not imagine something like a "triangle" but rather we find it in books or in the virtuality of a screen. Only later can we imagine it with the help of memory and imagination. Remember it outside of a certain context. And even better is that we identify both things (what is brought from memory and what we find in a classroom) as the same.

    Now, the reduction you are trying to make is done incorrectly. That is not a reduction, it is an association between elements. But there is no approach in which the terms, operations and relations of geometry are equivalent or can be replaced by other terms, other operations and other relations. That is why you can never start from psychological elements (assuming that something like that exists) to deduce the Pythagorean theorem, or the theory of relativity, which in this case would be the same thing.

    Let me teach you something: When you say that something IS psychological and is reducible to the psychological, you are determining an identity, that is, you must necessarily determine it semantically as well, and go from that identity to a reduction that results in a replacement of terms, then of operations and then of relationships (since geometry is constituted, like any science, by these things). So assuming you have the terms of psychology you have to carry out a replacement, as long as you are talking about BEING X. If the reduction is understood as an identification then it is an eliminativism.

    Now, you haven't been able to carry out this reduction and identification at the same time. That's why the only legitimate thing you can say is that there is an association between elements of psychology and elements of geometry. But we must remember that association is not equivalent to either identification or reduction
    The principal point of my argument is that you should developed or presented a real reduction. But you didn't and just constantly repeat that something is psychological because geometry is something created by humans. That kind of statements need to be well explained and demonstrated. But that's not your case.

    You are only providing more evidence that you are simply begging the question with your claim: " the field of geometry is closed with respect to that of psychology is only a necessary argument for the debate."

    What you appear to be saying, is that this premise is not made "necessary" by any real evidence, it is just necessary for your argued position. However, as I explained, it is the only way that you can support your conclusion, by starting with a premise which leads necessarily to that conclusion. Begging the question.
    Metaphysician Undercover

    Not at all. That the field of geometry is closed to the field of psychology means that the geometric thing is not reduced to nor can it be identified with the geometric thing. Again, the relationships that are discovered, the semantics that are implicit, operations, terms, etc.

    This very poor logic. There is no "absolute difference" implied, even though I cannot say that I understand what that would actually mean. As I explained already, two things of the same type can be called by the same name. Two different dogs are both called "dogs". Two different numerical systems can both be called "numerical systems". And, the two incommensurable numerical systems can exist within the same field, mathematics. Your claim that only one could be called a numerical system, and the other would have to be called something else, is nonsensical and clearly illogical, as being not supported by any premise which would produce that conclusion.Metaphysician Undercover

    Not all incommensurabilities act in the same way. Furthermore, we can take your example of the incommensurability between a leg and the hypotenuse. Well, when you say that both are incommensurable, you are saying that they are different natures, one is rational and the other must be irrational. Well, in the same sense it is said about geometry and psychology: they are things of different natures.

    Well, if you do not agree that two different things can be said to be the same type, then I believe this discussion is pointless. And I really do not see how you conclude that this would make it impossible to speak of two different types.Metaphysician Undercover

    Ask yourself why in both cases you call them "dogs." If you want to stay in a rational discourse you have to say that they are the same in one sense, but also different in another.

    In fact that is precisely what I said. Things can be said to be the same in one sense and different in another. Now, when you choose equivocation you restrict your right to call two things the same way. Whether we're talking about dogs or number systems. I'm just taking your statements to the absurd (as they are more categorical statements than arguments, in my opinion).

    This is all psychology, as explained above. The supposed "elements", lines and angles, along with the internal relations, are completely imaginary.Metaphysician Undercover

    Well, I think I've refuted those claims.
  • JuanZu
    133
    Regrettably in this case I have to agree with your opponent. That is the error of psychologism. Geometric shapes and numbers are not mind-dependent in that sense at all, even though they can only be perceived by the mind. As Bertrand Russell remarked of universals 'universals are not thoughts, though when known they are the objects of thoughts.'Wayfarer

    I would say that they are not even just imagined. That is, they have a historical appearance, through writing and through language. You find a triangle in a book or on a computer. In fact, I would say that they are more perfect in both cases than in the imagination. But the most important thing is that if someone says that the contents of geometry can be reduced to psychology, that person must carry out that reduction and show it (for example, just as we can reduce Newtonian physics to relativistic physics). That case has not occurred. And I think I have explained why any attempt is doomed to failure.
  • Metaphysician Undercover
    13.2k
    I'm sorry but that is absolutely false. Even empirical evidence refutes it. For example, as children we do not imagine something like a "triangle" but rather we find it in books or in the virtuality of a screen.JuanZu

    I already went through this. I called it "learning". But if every idea of "triangle" comes from learning, this produces the infinite regress I described. So we know as historical evidence indicates, that there must be a beginning to humans producing triangles in their minds. Plato tried to escape the infinite regress by characterizing learning as recollection. Please don't ask me to circle back and repeat what I've already explained, this gets us no where.

    But there is no approach in which the terms, operations and relations of geometry are equivalent or can be replaced by other terms, other operations and other relations.JuanZu

    I don't see why you request that the terms be "replaced". That seems irrelevant. But if you insist, we could replace "triangle" with the Spanish "triangolo", or some other language. And operations differ as well, as the French do long division in a way different from the English. But, as I said, I really do not see the relevance. We could all use the same words, and the same operations, and all this would indicate is consistency in the teaching methods. It still does not demonstrate that the ideas are not humanly created in the beginning, that they are not artificial but discovered.

    Let me teach you something: When you say that something IS psychological and is reducible to the psychological, you are determining an identity, that is, you must necessarily determine it semantically as well, and go from that identity to a reduction that results in a replacement of terms, then of operations and then of relationships (since geometry is constituted, like any science, by these things). So assuming you have the terms of psychology you have to carry out a replacement, as long as you are talking about BEING X. If the reduction is understood as an identification then it is an eliminativism.JuanZu

    I gave you my method of reduction, the ideas of geometry are completely imaginary therefore the subject of psychology, as psychology deals with imaginary ideas which come to the mind. You have not at all justified your claim that replacement of terms is required so I'll treat it as a ruse, until you justify this claimed need.

    The principal point of my argument is that you should developed or presented a real reduction. But you didn't and just constantly repeat that something is psychological because geometry is something created by humans. That kind of statements need to be well explained and demonstrated. But that's not your case.JuanZu

    As I said, "psychology" deals with things of the mind like ideas, and this includes geometrical ideas. I don't see that you have refuted this in anyway. Here's a passage from the Wikipedia entry on "psychology".

    Psychology is the study of mind and behavior.[1] Its subject matter includes the behavior of humans and nonhumans, both conscious and unconscious phenomena, and mental processes such as thoughts, feelings, and motives. Psychology is an academic discipline of immense scope, crossing the boundaries between the natural and social sciences. — Wikipedia: psychology

    It seems like our disagreement concerns what "psychology" refers to, not what "geometry" refers to.

    Not at all. That the field of geometry is closed to the field of psychology means that the geometric thing is not reduced to nor can it be identified with the geometric thing. Again, the relationships that are discovered, the semantics that are implicit, operations, terms, etc.JuanZu

    I'm really not able to follow you at all JZ. What do you mean by "the geometric thing is not reduced to nor can it be identified with the geometric thing". Are you saying that contrary to the law of identity, a thing is other than itself?
  • Metaphysician Undercover
    13.2k
    Just so that you understand where I'm at JZ, I pretty much lost all my interest in discussion with you when you wrote the following, what I consider to be a very closed minded statement.

    When I talk about "meaning" I am not referring to something that happens in language, or something from authors with intentions and purposes, or anything like that. I am talking about the sense of, for example, an internal relationship between the elements of an object called a triangle. They occur from the object itself and have a meaning that is contrary to our intentionality, in the sense that it affects us from the outside, so to speak. The meaning here is that of the thing itself, that which belongs to its being.

    Otherwise the rest of your answer is based on introducing notions such as intentional acts (voluntary, with a purpose, with priorities and scales of value). But introducing these notions is wrong, in the sense that they are far from being able to describe the non-intentional and non-voluntary aspect that belongs to the thing that occurs as an internal relationship between elements of something like a triangle. Except for the notion of "order" which is referred to formalization of set theory then also transcends the psychological act. But I suspect that what you understand by order is rather referring to the human act of ordering things.
    JuanZu

    If you refuse to even consider the role of intention in your representation of meaning and ideas, I don't see how this discussion could progress in an meaningful way.
  • Janus
    16.3k
    What their existence might be outside of any perspective is meaningless and unintelligible, as a matter of both fact and principle.Wayfarer

    Yes, but the judgement that that they may have an existence outside of any perspective is neither demonstrably false nor unintelligible. You seem to be trading on the obvious truism that all our judgements are mind-dependent to draw the unwarranted conclusion that all existence must be mind-dependent. Existence and judgement are thus unjustifiably conflated
  • Wayfarer
    22.5k
    You seem to be trading on the obvious truism that all our judgements are mind-dependent to draw the unwarranted conclusion that all existence must be mind-dependent.Janus

    Every judgement concerning what exists is indeed dependent on our intellectual and sensory faculties. I believe this is in line with Kant's philosophy, as is the OP on the whole.
  • Joshs
    5.7k
    Yes, but the judgement that that they may have an existence outside of any perspective is neither demonstrably false nor unintelligible. You seem to be trading on the obvious truism that all our judgements are mind-dependent to draw the unwarranted conclusion that all existence must be mind-dependent. Existence and judgement are thus unjustifiably conflatedJanus

    I would assume that Wayfarer wouldn’t deny existence outside of perspective. But as an exercise, try to imagine constructing a sentence describing such existence. To begin with, the subject-object grammar of language must be bracketed off, including any properties or attributes (location in space and time, size, weight, color, shape, etc) ascribed to said existence. Perhaps rather than unintelligible, one could say such existence would be profoundly devoid of meaning, given that the meaning of describable objects is tied to their use for us as prescribed by some sort of grammar.
  • Janus
    16.3k
    I'm well aware that we cannot speak about the nature of what lies outside the scope of our experience and judgement. So neither of you seem to have carefully read and considered what I've been saying, which was in no way contesting this obvious truism.
  • Joshs
    5.7k
    ↪Wayfarer ↪Joshs I'm well aware that we cannot speak about the nature of what lies outside the scope of our experience and judgement. So neither of you seem to have carefully read and considered what I've been saying, which was in no way contesting this obvious truism.Janus

    Would you agree with the following?

    “Questions, what things ‘in-themselves’ may be like, apart from our sense receptivity and the activity of our understanding, must be rebutted with the question: how could we know that things exist? ‘Thingness’ was
    first created by us” (Nietzsche, WTP 569). Just talking about an uncate­gorized reality is already applying categories like “thingness” to it, and hence is precisely not talking about something uncategorized. If we were to remove all categories, then ex­istence, substance, and causality would have to go, and they are the mate­rials from which Kant built his concept of noumena as the source of our sensory data. Indeed, they are the conceptual resources that any discussion must draw upon; withdraw them all and we are left with, as Hegel said, just “a pure direction or a blank space” (Hegel, PS 47, §73).

    Good­man puts it succinctly: “We are confined to ways of describing whatever is described” (Goodman 1978, 3), or “talk of unstructured content or an un­conceptualized given or a substratum without properties is self-defeating;
    for the talk imposes structure, ascribes properties.”
  • Leontiskos
    3.1k
    You seem to be trading on the obvious truism that all our judgements are mind-dependent to draw the unwarranted conclusion that all existence must be mind-dependent. Existence and judgement are thus unjustifiably conflated.Janus

    Yes, quite right. :up:

    For the classical realist the extramental world can be known in itself precisely through the rational, perspective-grounded mind.Leontiskos
  • Joshs
    5.7k


    For the classical realist the extramental world can be known in itself precisely through the rational, perspective-grounded mind.
    — Leontiskos
    Leontiskos

    And for the New Materialist knowing the world is interacting with it and interacting with it is changing it.
  • Wayfarer
    22.5k
    I would assume that Wayfarer wouldn’t deny existence outside of perspectiveJoshs

    I've been pretty careful about that point. The way I've put it is that any meaningful judgement about existence assumes a perspective, but that doesn't say that in the absence of perspective, nothing exists. Rather it is that both existence and non-existence are conceptual in nature. ON that particular point I appeal to Buddhist philosophy.

    By and large, Kaccayana, this world is supported by a polarity, that of existence and non-existence. But when one sees the origination of the world as it actually is with right discernment, "non-existence" with reference to the world does not occur to one. When one sees the cessation of the world as it actually is with right discernment, "existence" with reference to the world does not occur to one. — The Buddha
  • Janus
    16.3k
    Would you agree with the following?

    “Questions, what things ‘in-themselves’ may be like, apart from our sense receptivity and the activity of our understanding, must be rebutted with the question: how could we know that things exist? ‘Thingness’ was first created by us” (Nietzsche, WTP 569).
    Joshs

    I would not agree with that; the questions "what things 'in themselves' may be like" and "how could we know that things exist": are two different questions. We know things exist for us because we sense them, but we cannot know what things in themselves are like even though we know what they are like for us. So, we know how things appear to us and we have good reason to think things exist apart from our perceptions of them, because other animals, judging from their behaviors, sense things in much the same ways we do. We naturally come to the concept of "thingness", but this is a linguistically mediated concept. We can be fairly certain that things stand out for other animals as gestalts, but we cannot know if there is any prelinguistic conception of "thingness" as opposed to merely "a sense of things".

    So, I see Nietzsche's statement as being too anthropocentric.

    Good­man puts it succinctly: “We are confined to ways of describing whatever is described” (Goodman 1978, 3), or “talk of unstructured content or an un­conceptualized given or a substratum without properties is self-defeating; for the talk imposes structure, ascribes properties.”

    I don't agree with this, because we can impute mere existence without claiming, or being required, to know what the nature of that existence is.
  • Wayfarer
    22.5k
    What is absent is the conceptual space for 'the unconditioned'. Perception and perceptual objects are conditioned in two different ways - first because our grasp of them is conditioned by our own conceptual categories, second because they are arise as a consequence of conditioned factors. But the problem with that is that it easily falls into complete relativism and subjectivism - that things are only real 'for me'. What is sought is a grasp of 'what truly is the case'.

    Here I will transpose the conversation to Buddhist philosophy, although there are alternatives. But in Buddhist philosophy, there is a term for 'seeing things as they truly are', which is one of the attributes of the Buddha. One of the canonical early texts says, 'there is, monks, an unborn, uncreated, unmade. Were there not an unborn, uncreated, unmade, there would be no release from the created, the born, the made' (i.e. 'the conditioned'). There are parallels in Christian mysticism, 'wisdom uncreate', in the writings of Meister Eckhardt and some other sources, drawing from Platonism.

    But I think this domain of discourse is pretty well ring-fenced off in contemporary dialogue, because of its seemingly religious connotations. I think, maybe, Heidegger attempted to approach it, in his oblique way, although I'm not too conversant with it. But it is the one subject where the dialogue with non-dual philosophy (Zen and Advaita) at least provides a kind of vocabulary.
  • Wayfarer
    22.5k
    anyway, logging out for Christmas to pay attention to family needs, many thanks and best wishes to all for the Festive Season. :halo: :pray: :ok:
  • mcdoodle
    1.1k
    Happy Christmas!
  • Wayfarer
    22.5k
    @Tom Storm - a follow-up essay, this one questioning Bernardo Kastrup's 'mind-at-large' from a Buddhist perspective. It is dated some months ago but until now it was unlisted. Is there Mind at Large?

    and Happy New Year :party: :sparkle: :clap:
  • Tom Storm
    9.1k
    This is good stuff. Beautifully laid out. I’ll read it again and perhaps pose a question or two. Thanks.
  • Bret Bernhoft
    222
    Yes, indeed the world is mind-created. While the planet is not explicitly so. Another way of looking at this is to say that the world is the psychic glove that fits over planet Earth.
  • Janus
    16.3k
    From the essay:
    Each being possesses this storage consciousness, which thus becomes a kind of collective consciousness that orders human perceptions of the world’ — even though this apparent world does not possess an intrinsic reality.

    I can't see any distinction between this idea of a collective consciousness and the idea of "mind at large". What would you say is the difference?

    Crappy Newt's Ear!
bold
italic
underline
strike
code
quote
ulist
image
url
mention
reveal
youtube
tweet
Add a Comment

Welcome to The Philosophy Forum!

Get involved in philosophical discussions about knowledge, truth, language, consciousness, science, politics, religion, logic and mathematics, art, history, and lots more. No ads, no clutter, and very little agreement — just fascinating conversations.