• Shawn
    13.1k
    Another one of my topics in the Logic & Philosophy of Mathematics section.

    Wittgenstein as a logician stated that the sum total of logic consists of tautologies, contradictions included. He also said that quintessentially because logic is tautological, logic takes care of itself.

    Now, both Wittgenstein and Gödel met at the Vienna Circle, a meeting-place for the then acclaimed logical positivists. After Wittgenstein published his Tractatus-Logico-Philosophicus, the Vienna Circle studied it not only once but twice. Gödel held a positive opinion of the work. The only point of contention between Gödel and Wittgenstein was one single instance of disagreement about the implication of Gödel's work on logic and mathematics. Namely, Gödel's Incompleteness Theorems is what Wittgenstein claimed to be logical "tricks". Some people say that Wittgenstein didn't understand Gödel, however, I think it is the other way around. Let me explain in brief.

    What Gödel proved was a truth that can only be seen in a formal system such as Peano Arithmetic. The rules governing formal systems do not apply to informal systems, where pretty much any instance of applying a new rule to an informal system, can be integrated into the system itself. This feature of informal systems, such as language, is not possible in formal systems like Peano Arithmetic. Wittgenstein went to great lengths in the Philosophical Investigations to try and see what rules govern language, and was not able to provide a clear answer. Just to point out my own understanding, the problem of what governs rules in language is a subject best framed, not in terms of logic, but according to syntax and grammar. Grammar is not subject to the constrains of logic, it takes part in the very structure of how language is able to be transmitted and understood between people. One day we will be able to understand universal grammar, which would be able to answer the question that grappled or still grapples many analytic philosophers since Bertrand Russell and his protege, Wittgenstein.

    To return to the topic of Wittgenstein and Gödel, if one looks even at nature or physics, which describes logic, which the system of nature and physics is in fact complete and whole. There is no incompleteness in nature (As a side note, Einstein had discussions with Gödel about how singularities and indeterminism could partake in physics and nature, which made him think nature was "incomplete," for lack of a better word). This ad hoc argument is formulated against the Incompleteness Theorems regarding how nature and the universe are unitary and whole. None of this would make any sense to readers who think that logic is independent of reality. I don't think this is possible. Logic manifests itself from human intuition and the laws of nature describing the relations logic can posit, through human understanding.

    Not to sound grandiose; but until greater understanding is attained about the relation between logic and mathematics, which was an aspiration of many mathematicians and logicians during the war period, which Gödel had negated with his Incompleteness Theorems, then we will not have the scaffolding to venture past the conclusions of Gödel. Hilbert's program was intended for such greater understanding. Again, logic takes care of itself and its relation to mathematics is quite possibly something we would be able to better understand if we can get past the conclusions of Gödel's Incompleteness Theorem's.

    I would like to end this post with a thought that generated, mostly, these corresponding thoughts about Gödel and Wittgenstein, and physics.

    Gödel's incompleteness theorem applies to formal languages with countable alphabets. So it does not rule out the possibility that one might be able to prove 'everything' in a formal system with an uncountable alphabet OR expand the alphabet to account for new variables*. — Shawn

    *-Variables could stand for new understanding itself, within a system of thought or a model of reality.

    Edit: Added and fixed some things.
  • TonesInDeepFreeze
    3.4k
    What Gödel proved was a truth that can only be seen in a formal system such as Peano Arithmetic.Shawn

    No, Godel proved a meta-theorem regarding formal systems of a certain kind, including PA. The proof of that metatheorem can be done in various formal systems or done in ordinary informal mathematics, as is the case with Godel's original proof. Moreover, the proof make use of only finitistic, intuitionistically acceptable principles.

    The rules governing formal systems do not apply to informal systems,Shawn

    Godel's proof pertains only to formal systems.

    where pretty much any instance of applying a new rule to an informal system, can be integrated into the system itself.[/quotes]

    I don't know what that is supposed to mean.
    Shawn
    There is no incompleteness in natureShawn

    Incompleteness is a property of certain formal systems. I don't know what it means to say that nature is or is not complete.

    Einstein had discussions with Gödel about how singularities and indeterminism could partake in physics and nature, which made him think nature was "incomplete," for lack of a better word).Shawn

    Who used the word, for lack of a better one? And what is your source?

    until greater understanding is attained about the relation between logic and mathematics, which was an aspiration of many mathematicians and logicians during the war period, which Gödel had negated with his Incompleteness TheoremsShawn

    The incompleteness theorem is an important limitation of certain kinds of formal systems. But the incompleteness theorem doesn't "negate" the importance of logic in mathematics. The incompleteness theorem doesn't "negate" that virtually all (or all) of classical mathematics is axiomatized in a system that uses first order logic.

    if we can get past the conclusions of Gödel's Incompleteness Theorem's.Shawn

    What "conclusions" do you have in mind? The incompleteness theorem is a mathematical theorem with mathematical corollaries. Of course, some people make philosophical inferences based on the theorem, but such inferences are not of the mathematical theorem itself.

    Gödel's incompleteness theorem applies to formal languages with countable alphabets.Shawn

    A language is not formal if it is not a countable language. The incompleteness theorem pertains only to systems with formal languages.

    So it does not rule out the possibility that one might be able to prove 'everything' in a formal system with an uncountable alphabetShawn

    There are no formal languages with uncountably many symbols. There are languages written in symbolic logic that have uncountably many symbols, but they are not formal languages. The defintion of 'formal language' includes that the language is countable.

    OR expand the alphabet to account for new variables*.Shawn

    As long as you add only countably many variables, the incompleteness theorem will hold.
bold
italic
underline
strike
code
quote
ulist
image
url
mention
reveal
youtube
tweet
Add a Comment

Welcome to The Philosophy Forum!

Get involved in philosophical discussions about knowledge, truth, language, consciousness, science, politics, religion, logic and mathematics, art, history, and lots more. No ads, no clutter, and very little agreement — just fascinating conversations.