Now you are losing track of the quantifiers. Given the observation of a green apple, the probability that some non-black thing is a non-raven is 1. It tells us absolutely nothing about the probability that all non-black things are non-ravens; that is still either 0 or 1. — aletheist
A minor terminological point here: in the context of hypothesis testing, "confirmation" generally means "make more likely," and is not to be confused with "verification," which is to demonstrate that the hypothesis is true. (In other words, verification is the limiting case of confirmation.)I'm not talking about confirmation, i.e. proof. I'm talking about evidence. Evidence is just whatever increases the probability that the statement is true. — Michael
If there are a limited number of ravens in the world (which there almost certainly are), does that change whether observations of black ravens (or non-black non-ravens) at least incrementally confirm the universally-quantified hypothesis "all ravens are black"?Edit. No, that last bit's wrong. It's the limited number of eggs that raises the probability, If there were only 12 ravens and eleven had been found to be black, your probabilities would work. It's knowing how many there are before you start looking at them that is problematic, along with making the existential claim that I have been pointing out all along. — unenlightened
This is a semantic concept; two statements are equivalent if they have the same truth value in every model".
There really isn't anything to argue here. — Michael
That's right, there is nothing to argue here. So long as you separate logical equivalence, equivalence according to contraposition, and semantic equivalence, equivalence of meaning, and do not equivocate between them, as you have been doing, then there is no paradox, and nothing to argue. — Metaphysician Undercover
I really don't understand what you're trying to argue here. I have provided references that show that P → Q is logically equivalent to ¬Q → ¬ P and that two statements that are logically equivalent have the same truth value in every model. — Michael
They are logically equivalent according to contraposition, but they do not have the same truth value in every model, so they are not semantically equivalent. — Metaphysician Undercover
Now you have presented me with symbols, "P" and "Q". Unless these symbols are meant to symbolize something, how are we to discuss semantic equivalence? To say that the two statements have the same truth value in every model is meaningless, because P and Q are just symbols which don't represent anything, so there is no truth or falsity of those statements to discuss. How can we discuss whether "if P then Q" is true or false if the symbols have no meaning?
This is contradiction. If two statements are logically equivalent according to contraposition then ipso facto they have the same truth value in every model. — Michael
P is "X is a raven". Q is "X is black". So, P → Q is "if X is a raven then X is black". Which is logically equivalent to ¬Q → ¬P, "if X is not black then X is not a raven". — Michael
The claim is "if something is not black then it is not a raven". The probability that it is true isn't 0 if we have a green apple. — Michael
Now consider the other proposition "if X is black then X is not a raven". This is consistent with "if X is not black X is not a raven", but it is not consistent with "if X is a raven then X is black", so the two statements do not have the same truth value in every model. — Metaphysician Undercover
If there are a limited number of ravens in the world (which there almost certainly are), does that change whether observations of black ravens (or non-black non-ravens) at least incrementally confirms the universally-quantified hypothesis "all ravens are black"? — Arkady
To clarify, the model (often called a "world") in which these two propositions are consistent is one in which ravens do not exist; hence X is not a raven, regardless of whether X is black or not black. This goes back to the point about universal propositions not asserting the existence of anything. — aletheist
The actual mathematics of probabilities includes the fractions between 0 and 1. — Michael
If we have an egg-making device and know that there's a probability of 0.5 that any egg it makes is white (say we have an actual random number generator that if odd produces a white egg and if even produces a brown egg) then we know that there's a probability that every egg it makes, assuming it makes 10, being white is 0.510. — Michael
And we can use this reasoning even the machine has already made the eggs. — Michael
This is where I disagree - the reasoning is not the same. Once the machine has actually made the eggs, how many of them are white is a fact. If they are all white, then the probability that they are all white is 1; if any of them are non-white, then the probability that they are all white is 0. Our knowledge (or lack thereof) about how many are white vs. non-white is irrelevant to the associated probabilities. — aletheist
Probabilities are usually defined in terms of the uncertainty in what’s known. Liar’s dice is a beautiful example (so are most card games for that matter); all of the dice are what they are, and yet in the picture above, if you’re the player on the left, then there’s a chance of 1 that all of your dice are 5’s, but there’s an even chance that your opponent’s dice could be any combination. From the left player’s perspective, there’s some chance that the dice on the right are, say, “1,2,3,4,5”, even though from the right player’s perspective, that chance is zero (the right player knows their dice are not “1,2,3,4,5”).
Long story short: probability is extremely subjective. Whether an event happened in the past or will happen in the future doesn’t make too much difference, it’s the knowledge you have about an event that defines its probability (for you).
Long story short: probability is extremely subjective. — Michael
But if you insist on your understanding, then I think that this post is still relevant. — Michael
Note that you shouldn't conflate "if something is not black then it is not a raven" with "everything that is not black is not a raven". — Michael
Notice that the observation of a green apple can have no effect whatsoever on any of these probabilities. It only tells us that the probability that non-black non-ravens exist is 1; i.e., some non-black things are non-ravens. — aletheist
The only way I can see that these two propositions are not logically equivalent is if the first one is treated as singular, rather than universal; and in that case, it is no longer logically equivalent to the original proposition, "All ravens are black." — aletheist
We do not know the value of n, the total number of non-black things, or 1/x, the probability that a randomly selected non-black thing is a non-raven. Your equations presuppose that n is finite and that 1/x<1; i.e., that some ravens are non-black. If we include not just all actual non-black things in n, but all potential non-black things, then n is infinite, and the probabilities are identical before and after the observation of a green apple, regardless of the value of 1/x. If all ravens are black, then 1/x=1, so both probabilities are 1, regardless of the value of n. — aletheist
You were quoting someone else here, but it expresses precisely why I take exception to using the term "probability" in this way, rather than "confidence" or "degree of belief." It gives a false connotation of objectivity to what is a fundamentally subjective assessment.
I beg to differ! If there is such a thing as probabilistic support for a universal statement, then green apples do indeed support "all ravens are black". — tom
Notice that the observation of a green apple can have no effect whatsoever on any of these probabilities. It only tells us that the probability that non-black non-ravens exist is 1; i.e., some non-black things are non-ravens. — aletheist
I said that the observation of a green apple only supports - in fact, proves - the particular proposition that some non-black things are non-ravens. — aletheist
It was meant to be equivalent to "if something is a raven then it is black" (which is why this is the phrase I've been using since page 3/4. — Michael
I'm not sure the relevance of potential non-black things. Can't this just be about actual non-black things? — Michael
How, exactly, can one misinterpret the claim "there's a 0.512" that every egg in that (closed) cartoon is a white egg? — Michael
I have just proved that observational support for for a universal statement is impossible. If you think such support exists, and in particular that the observation of green apples provide support for any such statement, you have just been proved wrong. — tom
Why do you keep addressing this to me? My statement that you quoted has absolutely nothing to do with universal propositions. Observation of a green apple merely proves that the particular proposition, "some non-black things are non-ravens," is true (p=1). — aletheist
Get involved in philosophical discussions about knowledge, truth, language, consciousness, science, politics, religion, logic and mathematics, art, history, and lots more. No ads, no clutter, and very little agreement — just fascinating conversations.