• Marchesk
    617
    It's not metaphysical in the slightest, it's the real physical situation.tom

    LOL! Only if you take Schrodinger's equation to be modelling a real state of affairs, and disregard all other interpretations, or the possibility that QM will be superseded by a better theory at some point.

    I'm not saying that MWI is untrue, I'm just pointing out that it's one interpretation based on taking the wavefunction literally. Of course, I have no idea what's ontologically the case.

    And, the other worlds are required to explain what we see in this world in terms of interactions with them - i.e. it is a testable prediction.tom

    That's not testable unless it makes predictions the other interpretations don't. And we don't have anyway of going to or viewing those other worlds. It falls out of the math, nothing more.
  • Wayfarer
    1.7k
    When you say 'MWI is a testable prediction', what you mean is that the results are compatible with the many worlds explanation; the results appear to support the idea that there are many worlds. But you can never actually detect 'the other worlds' directly, except by way of inference. Is that the case?
  • Marchesk
    617
    It's not metaphysical in the slightest, it's the real physical situation. And, the other worlds are required to explain what we see in this world in terms of interactions with them - i.e. it is a testable prediction.tom

    Anyway, I didn't make this thread to debate MWI, or any other standard interpretation. I wanted to know what people thought about Binney's interpretation.

    I'll restate it briefly. There wavefunction is not real. Rather, our uncertainty about the exact quantum state (which is classical in Binney's interpretation) is translated to the particle or particles in these experiments. If we could take into account the exact state of the measuring device, then the uncertainty of the particle's property in question would dissipate, and thus there would be no need for the wavefunction.

    I heard about this watching a youtube video of a conference in which Binney and an MWI proponent got to talk for a while and then field questions. The MWI proponent conceded to Binney that MWI would be totally unnecessary if the measuring device is the culprit, but doubted that having more exact knowledge of its quantum state would make the uncertainty disappear.
  • Marchesk
    617
    Binney's view of the wavefunction is that it's a really useful and powerful tool, given our limited knowledge, but it has unreal properties, such as superposition. He thought the notion of a superposed cat to be absurd, like Schrodinger did. Basically, Binney thinks all the other interpretations of QM go wrong because they took the wave equation to be something more than a useful tool.
  • Marchesk
    617
    It sounds a bit like the hidden measurement interpretation (https://en.wikipedia.org/wiki/Hidden-measurements_interpretation)Gooseone

    Yeah, that's pretty close to what Binney was arguing for. I don't recall that he mentioned any history of the development of hidden measurement, which often happens with the other interpretations. Looks like the wiki entry goes a bit farther with it than I recall Binney mentioning, but I've only listened to the talk once.
  • Wayfarer
    1.7k
    There wavefunction is not real. Rather, our uncertainty about the exact quantum state (which is classical in Binney's interpretation) is translated to the particle or particles in these experiments.Marchesk

    Basically, that calls into question the whole 'uncertainty principle' discovered by Heisenberg. Einstein wanted desperately to believe something similar - that the uncertainty was due to something we didn't know, either some hidden factor, or some inherent fault with the apparatus. From my reading, Bohr met every one of Einstein's challenges along these lines (as detailed in Manjit Kumar's book Quantum).The final nail in the coffin was Aspect experiments which falsified the EPR conjecture.
  • Marchesk
    617
    From my reading, Bohr met every one of Einstein's challenges along these lines (as detailed in Manjit Kumar's book Quantum).The final nail in the coffin was Aspect experiments which falsified the EPR conjecture.Wayfarer

    Yeah, but I don't think it falsifies HMI (hidden measurement interpretation, which looks basically like what Binney was promoting). That's because the hidden variables are not in the particle, they are in the measuring device (our lack of knowledge of its exact state, or the fluctuations of the device when detecting the particle). Looks like HMI is not entirely classical in that the quantum state of the device does fluctuate, but maybe that's consistent with Binney stating at one point that particles are just excitations in the quantum field.

    Binney does reiterate during his portion of the talk how the measurement device is always left out of the modelling of the experimental results, because it's too complex to model, but arguments over the interpretation of QM always forget that.
  • Marchesk
    617
    As such, the title is misleading. It is a hidden variables approach, just not of the particle, and its non-classical. The way Binney stating things, though, was that the measuring device has exact properties at any specific time, we just can't measure all of them. But the HMI wiki entry states there are quantum fluctuations of the device when it makes a measurement.
  • Metaphysician Undercover
    963
    So no fundamental indeterminism, no pilot waves, no non-locality, no other worlds, and no weird collapse.
    ...
    We just can't precisely measure the molecular arrangement of the screen.
    Marchesk

    The problem is to be found right here in these two phrases. One cannot determine "the exact" molecular arrangement of the screen without referring to non-local factors. The screen is a material object, and to determine the exact arrangement of the parts of any material object requires the consideration of outside forces, because all objects are constantly interacting with other objects in their environment. So there are always non-local unknowns, gravity of the earth, sun, galaxy, expansion of space, etc..

    It is a hidden variables approach, just not of the particle, and its non-classical.Marchesk

    We have to look at the hidden variables as the unknowns concerning the activities of the universe. the passing of time in the universe. Since these unknowns are concerning the universe as a whole, unknown things about the way that time passes in the universe, then we cannot say that the hidden variables are proper to the particles or to the screen, they are proper to the universe itself, and this is what makes them appear as non-local.
  • Rich
    82
    I'll restate it briefly. There wavefunction is not real. Rather, our uncertainty about the exact quantum state (which is classical in Binney's interpretation) is translated to the particle or particles in these experiments. If we could take into account the exact state of the measuring device, then the uncertainty of the particle's property in question would dissipate, and thus there would be no need for the wavefunction.Marchesk

    The issue with Binney's approach, which has been previously discussed in depth in many books I read, is defining the state of the "measuring device" which must include the device and all that is entangled with the device including the observers. Ultimately, Binney's approach requires knowledge of the state of the universe from some outside perspective. Is this possible?

    Given that the Bohm-DeBroglie real, casual interpretation has the most easily understood ontology, has been experimentally supported (Bell, Aspect, and subsequent experiments detailing non-local effects), and leaves open the very critical notion of possibilities and creativity, there seems to be little reason to embrace other interpretations at this time. Both the MWI and Binney's interpretation are inaccessible while Bohm's non-local prediction are continually tested and verified.
  • Metaphysician Undercover
    963
    Ultimately, Binney's approach requires knowledge of the state of the universe from some outside perspective.Rich

    This is the thing. We cannot know "the state of the universe" because time is continually passing. So this so-called "state" is a state of change, which is inherently indeterminable because it defies the law of excluded middle. Until we know what time passing is, we do not know what a state of change is.
  • Rich
    82


    Yes, I agree. A "state" cannot be defined in a universe that is constantly changing. This is essentially the Heisenberg principle. Binny wants to define a state when none exists. A quantum interpretation must take this into account which is why Bohm chose to use a Holomovement as his ontological model. The waves are real (whatever they may represent) and the "particles" (really wave perturbations) are most likely to occur at the areas of greatest wave intensity. Since it is holographic in nature, all is entangled and in constant flux, and one can never define a single state.
  • javra
    77


    This is the experiment that got me to change my mind about hidden variables some time ago:
    https://en.wikipedia.org/wiki/Delayed_choice_quantum_eraser



    I’d be impressed to see how people disagree with this experiment’s concluded implications in a manner consistent to the experiment’s methods and data.
  • Rich
    82


    The De Broglie-Bohm addresses the delayed choice by an instanteous action at a distance by the quantum field. So the photon that has passed the slit is still subject to the quantum field at the slit. Of course, the observer who also participates in the field has an effect. With the possibility of free will, we have a casual model of QM which permits creative actions.

    1133px-Doppelspalt.svg.png
  • javra
    77

    Though nowhere near as eruditely as others, I investigated Bhom’s views after first discovering this experiment. This in what then were my attempts to hold onto determinism.

    Of course, the observer who also participates in the field has an effect. With the possibility of free will, we have a casual model of QM which permits creative actions.Rich

    That is the crux of it, at least for me: does or doesn’t the causal factor which we term freewill take place? I couldn’t deny the implications of the delayed choice quantum erasure experiment—basically, that consciousness is in some way integral to the causal factors of the physical world as we know it. Which then brought me into numerous reveries regarding how determinism and freewill could mechanistically co-occur. Though I’ve lost count of the details then read, I remember Bhom’s interpretations of determinism somewhat lacking in this regard—though very aesthetically pleasing in numerous other ways. I’d have to reread things to better understand/remember the De Broglie-Bohm interpretations.

    What I was intending to get at is that the experiment appears to fully substantiate that consciousness has some top-down causal role in what physically, presently is. And it does this by accounting for all variables that could lead to alternative conclusions. I, at least, wasn't imaginative enough to find any. [just remembered, there's the multiple world scenario, but spiritual unicorns being on occasion seen by some is to me a far more plausible reality than that of the multiple world scenario]
  • Rich
    82
    What I was intending to get at is that the experiment appears to fully substantiate that consciousness has some top-down causal role in what physically, presently is. And it does this by accounting for all variables that could lead to alternative conclusions. I, at least, wasn't imaginative enough to find any.javra

    I think that Bohm was necessarily cautious about declaring consciousness and/or free will is necessitated by QM. Primarily, he sought to bring real, orthogonal meaning to the QM equations that can be readily conceptualized. It was enough for him that there was room for consciousness, free will, and creativity in what he called the holomovement of the Implicate Order.

    Bergson, forsaw all of this and though I have never read where Bohm may have been influenced by Bergson, De Broglie certainly did read Bergson and may have indirectly influenced Bohm.

    Bergson, via his own philosophical process, does come to the conclusion that there is Free Will, and it influences the evolution of Time (his capitalization) in a manner that corresponds to QM (De Broglie write an essay on this). Bohm dared not go so far though he's clearly implied it was there in his later works. One must remember that the instrumentalists are always ready to pounce on any one who dares to open the doors to free will and creativity.
  • javra
    77
    I think that Bohm was necessarily cautious about declaring consciousness and/or free will is necessitated by QM.Rich

    Bohm dared not go so far though he's clearly implied it was there.Rich

    Yes, we all know how that goes in certain academic circles. There the making a living part that goes hand in hand with reputation.
  • Rich
    82


    Agreed. This is why it is necessary sometimes to read between the lines to better understand what the debate is all about. Bohm's solution was ingenious but reputations were at stake.
  • Wayfarer
    1.7k
    You're aware that Bohm's reputation in US academia had already been permanently affected by his early association with communism? He was actually forced to originally move to South America before relocating to London.

    I was having a discussion here a few months back about an interesting feature of the double-slit experiment, which is that the interference patterns are not rate-dependent. Whether you fire one photon at a time, or many together, you end up with the same pattern (up to a certain point). I posted a couple of threads about this on physics forums. It strikes me as being philosophically significant, although nobody on the physics forums were prepared to acknowledge that. To me it signifies that the probability wave is not a function of time, and from a relativistic point of view, therefore not of space-time.
  • javra
    77
    You're aware that Bohm's reputation in US academia had already been permanently affected by his early association with communism?Wayfarer

    I wasn’t knowledgeable of this. … Them community-lovers. (there’s sarcasm here somewhere).

    I was having a discussion here a few months back about an interesting feature of the double-slit experiment, which is that the interference patterns are not rate-dependent. Whether you fire one photon at a time, or many together, you end up with the same pattern (up to a certain point). I posted a couple of threads about this on physics forums.Wayfarer

    Although I understand what you're referring to, I yet want to acknowledge the following: I can easily get lost in the maths with which modern physics is deeply entwined. [Could barely keep up with the more complex maths of ecology: When they started talking about 16-dimensional models of what was going on on the ground is when I started doodling things in my notebooks … pondering about the premises/axioms these folks used.]

    It strikes me as being philosophically significant, although nobody on the physics forums were prepared to acknowledge that. To me it signifies that the probability wave is not a function of time, and from a relativistic point of view, therefore not of space-time.Wayfarer

    If I’m interpreting your statement properly, I agree. Still, in candor, you are addressing far more detailed concepts of physics and its notions of time than I’m currently making sense of, imo.

    But the overall reason why I agree:

    QM relies upon time that is Newtonian like; Relativity deems time non-absolute but, traditionally, deterministic so that one obtains a Block-Time. Both these notions of time can be deemed problematic. The absence of a physical theory of everything which combines QM and Relativity attests to this, imo. Neither, imo, do theories fare better when attempting to unify QM with Relativity by declaring time to be non-real … although I’ve read one book where this was done.

    The philosophical qualm then becomes the question of what time is, this meta-physically. Obviously, this is not an easy issue to resolve. However, as always, once the metaphysical construct of what time is becomes better appraised by us, then we’ll hold new axiomatic foundations with which to address and remodel the mathematical representations of what’s going on. Otherwise, we will continue to gauge reality through use of inappropriate axiomatic notions of time. Like Newtonian physics, this is useful to some extent--but, due to the rudimentary errors involved, it will not be able to resolve the questions which we current seek answers to. The implications of QM here come to mind.
bold
italic
underline
strike
code
quote
ulist
image
url
mention
reveal
youtube
tweet
Add a Comment

Welcome to The Philosophy Forum!

Get involved in philosophical discussions about knowledge, truth, language, consciousness, science, politics, religion, logic and mathematics, art, history, and lots more. No ads, no clutter, and very little agreement — just fascinating conversations.